

CAD-CAE LAB

CAD PROJECTS

Part Modeling and Assembly

Manufacturing Drawing

GD&T

Design Optimization

Truck Trailer

Sleeper Bus CAD Model

STRENGTH AND DURABILITY ANALYSIS

Component Structural Analysis

Low-cycle fatigue analysis

High-Cycle fatigue analysis

Hyper elastic Material analysis

Transient Shock Analysis

Nonlinearity – Contact, Geometry and material

THERMAL ANALYSIS

Powertrain cooling

Thermal stress on the weld due to thermal shock

Exhaust system development

Battery Thermal Management

Thermal Stress fatigue analysis

CFD ANALYSIS

Port flow analysis

Exhaust system analysis

Exterior aerodynamics drag and lift predictions

Battery cooling

Conjugate heat transfer analysis

NVH ANALYSIS

Benchmarking, target setting and cascading

Components Modal Analysis.

Harmonic Analysis

Random Vibration and Response spectrum Analysis by applying the

Vibration Fatigue analysis

Correlation to physical prototype

Methodology Establishment Through Correlation With Inhouse Physical Testing Facility

CRASH/IMPACT ANALYSIS

Energy Management Strategy

Structural Safety for meeting the Regulation and Customer test

Correlation to physical prototypes

Load Path definition

Evaluation of FOPS & ROPS for Construction Equipment & Mining Vehicles

Nonlinearity of contact can be defined for the crash

Drop Simulation of Transportation Packages & Electronic Items

Methodology establishment through correlation with in-house physical testing facility

Design of Vehicle Barriers (Bollard / Blocker) and Evaluation as per ASTM F2656 / PAS 68 / IWA 14-1

MULTI-BODY DYNAMICS

Mechanism Simulation

Calculation of forces through MBD

Vehicle dynamics

Drive cycle simulation (e.g. FTP, NEDC) for fuel efficiency and emissions prediction

Engine transmission and vehicle dynamic performance (e.g. acceleration, max engine speed, max vehicle speed, distance travelled)

Drivetrain components design (e.g. gear ratio and gear shifting strategy optimization)

HEV & EV modelling and simulation

Integrated simulation of vehicle drivetrain system with engine model/ cooling system

Engine start/ stop, and electric launch & assist

Implementation of advanced technologies (e.g. regenerative braking, CVT)

3-D PRINTING/ADDITIVE MANUFACTURING

Alternative form of conventional manufacturing add each layer of material on another by thermoplastic

Manufacturing of Special tool dies for special purpose

It is cost efficiency method

The manufactured component is light weight

Quick turn around

The manufactured part have no residual Stress

Technology used

- SLM- SELECTIVE LASER MELTING
- SLS- SELECTIVE LASER SINTERING

Used in Automotive Components, Aerospace Industry, Art And Architecture, Tool And Dies, Medicine And Dentistry, Consumer Industry, Text And Logos.

SLS	SLM 250
Plastic Laser Sintering	Metal Laser Sintering
Build volume 340x330x450mm	Build volume 250x250x250mm
Accuracy of laser + 0.005mm	Accuracy of laser + 0.005mm
Aluminum Alloys, Titanium Alloys	Duraform Extreme Natural, Duraform Flexible

INDUSTRY DOMAIN

Innovation • Service • Excellence

- Automotive
- Railways
- Aerospace
- Space & Satellite
- Marine & Ship Building
- Defense
- Electrical & Electronics

- Structures
- Construction Equipment & machinery

Process Plant & Equipments

