AUTOMOTIVE INDUSTRY STANDARD

Classification and Test Requirements for Automotive Rubber Gaskets

PRINTED BY THE AUTOMOTIVE RESEARCH ASSOCIATION OF INDIA P.B.NO.832, PUNE 411 004

ON BEHALF OF AUTOMOTIVE INDUSTRY STANDARDS COMMITTEE

UNDER CENTRAL MOTOR VEHICLES RULES – TECHNICAL STANDING COMMITTEE

SET-UP BY MINISTRY OF SHIPPING, ROAD TRANSPORT & HIGHWAYS (DEPARTMENT OF ROAD TRANSPORT & HIGHWAYS) GOVERNMENT OF INDIA

December 2005

Sr. No.	Corr- igenda.	Amend- ment	Revision	Date	Remark	Misc.

Status chart of the standard to be used by the purchaser for updating the record

General Remarks :

INTRODUCTION

The Government of India felt the need for a permanent agency to expedite the publication of standards and development of test facilities in parallel when the work on the preparation of the standards is going on, as the development of improved safety critical parts can be undertaken only after the publication of the standard and commissioning of test facilities. To this end, the erstwhile Ministry of Surface Transport (MoST) has constituted a permanent Automotive Industry Standards Committee (AISC) vide order No. RT-11028/11/97-MVL dated September 15, 1997. The standards prepared by AISC will be approved by the permanent CMVR Technical Standing Committee (CTSC). After approval, the Automotive Research Association of India (ARAI), Pune, being the Secretariat of the AIS Committee, has published this standard. For better dissemination of this information ARAI may publish this document on their Website.

The present automotive standard is prepared to provide procedure for automotive rubber gasket materials and as a guideline for selection of test methods, defining acceptance criteria, performance requirement.

Considerable assistance has been taken from the following National / International Standards

1	SAE J 90-95	: Standard Classification System for Non - Metallic Automotive Gasket Materials
2	ASTM F 104-1995	: Standard Classification System for Non-Metallic Gasket Materials
3	IS: 3400	: Methods of Test for Vulcanized Rubbers (Relevant Part)

The Automotive Industry Standards Committee (AISC) responsible for preparation of this standard is given in Annex : I.

Classification and Test Requirements for Automotive Rubber Gaskets

1. SCOPE

The standard is being prepared for automotive rubber gasket materials. The standard provides guideline for selection of test methods, defining acceptance criteria, performance requirement which are essential for consistency and durability of associated components and minimize the failure of component/s or system in service.

The standard does not include cylinder head gasket materials, which are subjected to high temperature and creep relaxation characteristics.

2. **REFERENCES**

2.1	SAE J 90-95	: Standard Classification System for Non - Metallic Automotive Gasket Materials
2.2	ASTM F 104-1995	: Standard Classification System for Non-Metallic Gasket Materials
2.3	IS: 3400	: Methods of Test for Vulcanized Rubbers (Relevant Part)

3. SIGNIFICANCE AND USE

Rubber gasket materials such as cork and elastomers, cork and cellular elastomer and elastomeric treated materials are covered up in the standard for physical and mechanical characteristic requirements. The standard also provides test methods applicable for specific property test and guideline for selection of specification.

4. CLASSIFICATION AND TEST REQUIREMENTS OF RUBBER GASKETS

"Line Call out" as described in SAE J 90-95 and ASTM F 104-95 shall be used to classify rubber gasket materials in six digit number as shown in Table 1 and Table 2.

Basic six digit number	Basic Characteristic		
First Numeral	2 = to cork		
	3 = cellulose		
	4 = Fluoro Carbon polymer		
Second Numeral	When first numeral is "2", second numeral :		
	• 2 = cork and elastomeric (Class 2).		
	• $3 = \text{cork}$ and cellular rubber (Class 3).		
	When first numeral is "3" second numeral :		
	• 3 = elastomeric treated (Class 3).		
	When first numeral is "4" second numeral :		
	• $0 = \text{not specified.}$		
	• $9 = as specified.$		
Third Numeral	Compressibility characteristics determined in		
	accordance with IS 3400: Part X : 1977 shall		
	confirm to the percentage indicated by the		
	third numeral of the basic six digit number		

 Table 1

 Basic Physical and Chemical Characteristics

Basic six digit number	Basic Characteristic			
	0 = not specified	5 = 20 to $30%$		
	1 = 0 to $10%$	6 = 25 to $40%$		
	2 = 5 to $15%$	7 = 30 to $50%$		
	3 = 10 to 20%	8 = 40 to $60%$		
	4 = 15 to $25%$	9 = as specified		
	*7 to 17% for compres	sed sheeter process		
Fourth Numeral	Thickness increase w	hen immersed in ASTM		
	No. 3 Oil : determin	ned in accordance with		
	IS:3400; Part 6:1983	shall conform to the		
	percent indicated by	fourth numeral of the		
	basic six-digit number.			
	0 = not specified	5 = 20 to $40%$		
	1 = 0 to $15%$	6 = 30 to $50%$		
	2 = 5 to $20%$	7 = 40 to $60%$		
	3 = 10 to $25%$	8 = 50 to 70%		
	4 = 15 to $30%$	9 = as specified		
Fifth Numeral	Weight increase when	immersed in ASTM No.		
	3 Oil : determined in a	accordance with IS:3400;		
	Part 6:1983 shall c	onform to the percent		
	indicated by fifth num	eral of the basic six-digit		
	number.			
	0 = not specified	5 = 40%, max.		
	1 = 10%, max.	6 = 60%, max.		
	2 = 15%, max.	7 = 80%, max.		
	3 = 20%, max.	8 = 100%, max.		
	4 = 30%, max.	9 = as specified		
Sixth Numeral	Weight increase whe	en immersed in Water:		
	determined in accorda	ance with IS:3400; Part		
	6:1983 shall conform	to the percent indicated		
	by sixth numeral of the	e basic six-digit number.		
	0 = not specified	5 = 40%, max.		
	1 = 10%, max.	6 = 60%, max.		
	2 = 15%, max.	7 = 80%, max.		
	3 = 20%, max.	8 = 100%, max.		
	4 = 30%, max.	9 = as specified		

	Table 2
Supplementary Physical	and Mechanical Characteristics

Suffix Symbol	Supplementary Characteristics
E 00 through E99	Weight and thickness change after immersion in ASTM Fuel B shall be determined in accordance with IS:3400, Part 6:1983. Weight increase shall not exceed the standard rating number indicated by the first numeral of the two-digit number of the E-symbol. Thickness increase shall not exceed the standard rating number indicated by the second numeral of the E-symbol.

Suffix Symbol	Supplementary Characteristics		
	Weight Increase,	Thickness Increase, %	
	(first numeral)	(second numeral)	
	$E0_{-} = not specified$	$E_0 = not specified$	
	$E1_{=10}$	$E_1 = 0$ to 5	
	E2_=15	$E_2 = 0$ to 10	
	$E3_{=}20$	$E_3 = 0$ to 15	
	E4_=30	$E_4 = 5 \text{ to } 20$	
	$E5_{=}40$	$E_5 = 10$ to 25	
	$E6_{-}=60$	$E_6 = 15 \text{ to } 35$	
	E7_=80	$E_7 = 25$ to 45	
	E8_=100	$E_8 = 30$ to 60	
	$E9_=$ as specified	$E_9 = as specified$	
Н	Adhesion characteristics shall be determined		
	in accordance with IS	5:3400, Part 24:2001.	
MI through M9	Tensile strength characteristics shall be		
	determined in accord	ance with IS:3400, Part	
	1:198/. Results in M	IPa (psi) shall be no less	
	than the value indicat	ted by the numeral of the	
	M-symbol.	1	
89	Volume change	characteristics, when	
	immersed in ASTM	No. 1 Oil, ASTM No. 3	
	Oil, and ASIM Ref	erence Fuel A, shall be	
	determined in accord	ance with IS: 3400, Part	
	6:1983. Results sha	all be as specified on	
	engineering drawing	or other supplement to	
	this classification.		

The classification identifies rubber material used for gasket, specific property desired for the given component and its combination with property values. One of the example to understand the classification system is described below :

33424E1M2S9

where,

- 3 Cellulose
- 3 Elastomeric treated
- 4 Compressibility 15 to 25%
- 2 Thickness increase in ASTM Oil 3, 5 to 20%
- 4 Weight increase in ASTM Oil 3, 30% max.
- E1 Weight and thickness increase in ASTM Fuel B, 10% max.
- M2 Tensile strength, 17.24Kg/cm² max.
- S9 Volume change in ASTM Oil 1 and 3, ASTM Reference Fuel A

5. SAMPLING AND CONDITIONING

5.1 The number of test specimens, sample size and shape and conditioning prior to performing specified test shall be as per respective IS 3400 specification and as per agreement between vehicle manufacturer and rubber component supplier.

5.2 Acceptance criteria shall be based on characteristics given in Table 1 and Table 2. The selection of test and criteria shall be as per agreement between vehicle manufacturer and rubber component supplier for the given gasket component based on its end application and performance requirement for the given type of vehicle. The requirements shall be specified by the vehicle manufacturer on engineering drawing of the component. As a guideline for the selection criteria, Table 3 shall also be followed.

Table 3	
Typical Test for Type of Rubber Gasket Materials	ļ

Properties, Characteristics and Test Methods	Cork and	Cork and	Cellulose or Other
	Cellular Rubber Type 1	Cellular Rubber Type 2	Organic Fibers
Compressibility : 1000-psi load (Test Method F 36, Procedure G) 100-psi load (Test Method F 36, Procedure F) 400-psi load (Test Method F 36, Procedure B) Tensile Strength	 X X	 X X	X X
Resistance to exposure in ASTM No. 3 Oil: Volume change, 70 h. at 212°F Weight increase, 22 h at 70 to 85°F	X	X 	X
Thickness increase 22 h at 70 to 85°F 5 h at 300°F			X
Resistance to exposure in ASTM Fuel B			
Weight increase 22 h at 70 to 85°F			Х
Thickness change 22 h at 70 to 85°F			Х
Resistance to exposure in ASTM No. 1 Oil Volume Change, 70 h at 212°F	X	Х	
Resistance to exposure in ASTM Fuel A Volume Change, 22 h at 70 to 85°F	X	X	
Resistance to exposure in distilled water Weight increase, 22 h at 70 to 85°F Thickness change, 22 h at 70 to 85°F			X X

ANNEX I (See Introduction) COMMITTEE COMPOSITION * Automotive Industry Standards Committee

Chairman			
Shri B. Bhanot	Director		
	The Automotive Research Association of India, Pune		
Members	Representing		
Shri Alok Rawat	Ministry of Shipping, Road Transport & Highways, New Delhi		
Shri Sushil Kumar	Department of Heavy Industry, Ministry of Heavy Industries & Public Enterprises, New Delhi		
Shri Chandan Saha	Office of the Development Commissioner, Small Scale Industries, Ministry of Small Scale Industries, New Delhi		
Shri S. Dasgupta Shri S. K. Bhatia (Alternate)	Bureau of Indian Standards, New Delhi		
Shri. A. S. Lakra Shri D. P. Saste (Alternate)	Central Institute of Road Transport, Pune		
Director	Indian Institute of Petroleum, Dehra Dun		
Dr. C. L. Dhamejani Dr. N. Karuppaiah (Alternate)	Vehicles Research & Development Establishment, Ahmednagar		
Shri Dilip Chenoy	Society of Indian Automobile Manufacturers		
Shri T.C. Gopalan Shri Ramakant Garg (Alternate)	Tractor Manufacturers Association, New Delhi		
Shri K.N.D. Nambudiripad	Automotive Components Manufacturers Association New Delhi		
Shri G. P. Banerji	Automotive Components Manufacturers Association New Delhi		

Member Secretary Mrs. Rashmi Urdhwareshe Deputy Director The Automotive Research Association of India, Pune

* At the time of approval of this Automotive Industry Standard (AIS)